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Abstract 
This study is an extension of the stochastic analysis of transient two-phase flow in 

randomly heterogeneous porous media (Chen et al., 2006), by incorporating direct 
measurements of the random soil properties. The log-transformed intrinsic permeability, 
soil pore size distribution parameter, and van Genuchten fitting parameter are treated as 
stochastic variables that are normally distributed with a separable exponential covariance 
model. These three conditional random variables with given measurements are 
decomposed via Karhunen-Loève decomposition.  Combined with the conditional 
eigenvalues and eigenfunctions of random variables, we conduct a series of numerical 
simulations using stochastic transient water-oil flow model (Chen et al., 2006) based on 
the KLME approach to investigate how the number and location of measurement points, 
different random soil properties, as well as the correlation length of the random soil 
properties, affect the stochastic behavior of water and oil flow in heterogeneous porous 
media. 
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1. Introduction 
Many hazardous organic materials, such as oils, gasoline, and petrochemicals are 

widely used in the chemical and petroleum industry.  Accidental release of these 
nonaqueous phase liquids (NAPL) to the subsurface are inevitable and represent a 
significant threat to water supply and eco-systems. Although the solubility of NAPL is 
low in water, but the concentration can still exceed drinking water standard a lot. Thus, 
small amount of NAPL can contaminate large volumes of groundwater over long period 
of time. Therefore, it is very important to understand the processes associated with 
contaminant migration and fate. Numerical multiphase flow models are used to study the 
various aspects of these processes in order to conduct risk assessment and design of cost-
efficient remediation (e.g. Abriola, 1989). Another primary application of multiple fluid 
systems is petroleum reservoir engineering, which depends on the understanding of 
reservoir mechanics to design schemes for efficient oil recovery. A petroleum reservoir is 
a complicated mixture of porous rock, brine, hydrocarbon fluids. The structure of the 
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void space is tortuous and heterogeneous, which influence and even dominate the fluids 
flow. Full characterization of subsurface zone properties is a mission impossible. Many 
researchers resort to stochastic modeling of subsurface flow in the last two decades 
(Dagan, 1989; Gelhar, 1993; Zhang, 2002). This approach regards hydrological variables 
uncertain and treats them random, which define flow model in a stochastic context rather 
than in the traditional deterministic framework, and predict the output in terms of 
moments.  

Zhang and Lu (2004) proposed a new stochastic approach, called KLME, based on 
Karhunen- Loève decomposition and polynomial expansions and applied it in saturated 
flow. Yang et al. (2004) extended KLME to analysis of saturated-unsaturated flow 
described by Richard’s equation. Chen et al. (2005, 2006) developed stochastic 
multiphase flow model following the same approach. These studies demonstrated the 
accuracy and efficiency of KLME over traditional Monte-Carlo simulation or other 
stochastic approaches, however, the errors of moments resulted from KLME becomes 
severe when the variances of input variables are large. Many studies in conditional 
simulation indicate that conditioning on measurements of the log hydraulic conductivity 
can reduce the overall uncertainty of the log hydraulic conductivity, especially in the 
vicinity of the conditioning points, which may reduce the predictive uncertainties of flow 
and transport (Dagan, 1982; Guadagnini and Neuman, 1999a, 1999b; Lu et al., 2002; 
Tartakovsky, Neuman, and Lu, 1999). Therefore, conditional simulation will enable 
KLME to be applied effectively in flow system with drastic heterogeneous field, and 
more accurate in normal heterogeneous soil. Lu and Zhang (2004) conducted conditional 
simulations of saturated flow using KLME by incorporating measurements of the log 
hydraulic conductivity. The key step is to derive and calculate the conditional 
eigenvalues and eigenfuctions through unconditional ones of log hydraulic conductivity 
covariance function using kriging techniques. Running the stochastic KLME saturated 
flow model with these conditional eigenvalues and eigenfuctions leads to the conditional 
simulations. In this study, we extend their work from the saturated flow to the transient 
water-oil flow system with three random input variables, including log intrinsic 
permeability Y, log pore size distribution β, and log van Genuchten fitting parameter n , 
with measurements in specific locations. We design a series of scenarios simulated by the 
stochastic KLME flow model to examine how the location and number of measurements, 
and the correlation length of covariance of these three random input variables influence 
the magnitude and distribution of uncertainties of predictive variables. 

2. KL decomposition of conditional random field 
A short description of Karhunen-Loève (KL) decomposition of unconditional random 

field is given below for readers to better understand conditional case. The KL 
decomposition of a stochastic process ( , )α θx , is based on the spectral decomposition of 
the covariance function of α, ( , )Cα x y , with a set of orthogonal polynomials (Karhunen, 
1947; Loève, 1948). x and y are spatial locations, and the argument θ  denotes the 
random nature of the corresponding quantity. ( , )Cα x y  is symmetrical and positive 
definite, whose eigenfunctions are mutually orthogonal and form a complete set spanning 
the function space to which ( , )α θx  belongs (Ghanem and Dham, 1998). The mean-
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removed stochastic process '( , )α θx  can be expanded as follows (Zhang and Lu, 2004; 
Chen et al., 2005): 

1
'( , ) ( ) ( )n n n

n
α θ ξ θ λ φ

∞

=

=∑x x ,       (1) 

where, nλ and ( )nφ x are the eigenvalues and eigenfunctions of the covariance kernel, 
respectively. ( )nφ x are orthogonal and deterministic functions and form a complete set 

( ) ( )n m nd mφ φ
Ω

=∫ x x x δ ,       (2) 

Eigenvalues and eigenfunctions can be solved from the Fredholm equation 
( , ) ( ) ( )C dα φ λφ

Ω
=∫ x y x x y ,      (3) 

where  Ω denotes the spatial domain where ( , )α θx is defined. As defined, { ( )}nξ θ  forms 
a set of orthogonal random variables, and has properties of ( ) 0nξ θ = , and 

( ) ( )n m nmξ θ ξ θ δ= , where nmδ  is the Krönecker delta function.  For separable 
exponential covariance function such as  
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where 2
ασ  and iη  is the variance and correlation length of ( , )α θx  in the ith direction, 

analytical solutions of eigenvalues and eigenfunctions can be obtained by combing one 
dimensional analytical solution in each direction.  For the general case, the eigenvalues 
and eigenfunctions have to be solved numerically via Galerkin-type method (Ghanem 
and Spanos, 1991).  

Assume Nα  measurements of 1α , 2α , … , Nαα  are located at , , … , 1x 2x Nαx , and 
we can obtain the conditional mean and variance of ( )α x  using the kriging method: 

( ) ( ) ( ) ( ) ( ) ( )
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where, weighting coefficients ( )iμ x  represent the relative significance of each 

measurement  ( )iα x  in predicting the ( )Cα  at location x, and can be determined by the 
following equations: 

( ) ( ) ( )
1

, , , 1, 2,..., .
N

i i j j
i

C C j
α

α α Nμ α
=

= =∑ x x x x x     (7) 

Apparently, the two-point conditional covariance ( ) ( ),CCα x y  is no longer stationary, and 
depends on the locations of x and y, instead of their separation distance. Generally, the 
corresponding eigenvalues ( )C

nλ  and eigenfunctions ( )C
nφ  have to be solved numerically 

(Ghanem and Spanos, 1991). However, for special case of a two-dimensional rectangular 
or three-dimensional brick domain, conditional eigenvalues and eigenfunctions can be 
related to their unconditional counterpart nλ  and nφ , which can be obtained easily 
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(Zhang and Lu, 2004).  The basic idea of this algorithm is to expand  and ( )iμ x ( )C
nφ  

based on unconditional eigenfunctions nφ  as follows (Lu and Zhang, 2004): 
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where ikμ ,  are coefficients determined by kd
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The computational efforts of obtaining conditional eigenvalues and eigenfunctions in this 
way are much less than that of solving them numerically via Galerkin-type method. It 
should be noted that this algorithm is only applicable to special type of covariance model 
described above. 

3. KL-based conditional moment equations 
The governing equations for the transient water-oil phase flow can be written as 

(Abriola and Pinder, 1985): 

[ ]
2

12
( , ) ( , ) ( , ) ( , )exp ( , ) ( , ) ,l l l l

l i l l
i ii

P t Z t P t S tg Z t F
x x tx

ρ δ φ
⎡ ⎤∂ ∂ ∂ ∂ t⎡ ⎤+ + = − −⎢ ⎥ ⎢ ⎥∂ ∂ ∂∂ ⎣ ⎦⎣ ⎦

x x x xx x (12) 

where ( ),lP tx  is the fluid pressure; l denotes liquids (l = w, o); ( ),lS tx  are the water (l = 

w) and oil (l = o) saturations; x is the position vector in 2- or 3-D; ( ,l )F tx is a source or 
sink term; ( , ) ln ( , )l lZ t tλ=x x , and ( , ) ( ) ( ) /l rlt k k Sl lλ μ=x x  is liquid mobility, where k(x) 
is the intrinsic permeability of porous media, krl  is the water or oil relative permeability, 
and lμ  is the liquid dynamic viscosity; lρ  is fluid density, and φ is the porosity of the 
media. 1iδ  is the Krönecker delta function, which equals 1 when i is 1 (upward direction) 
or 0 otherwise. The boundary conditions are as follows: 

0( ,0) ( ),l lP P=x x      ∈Ωx ,   (13) 
( , ) ( , ),l ltP t P t=x x      D∈Γx ,  (14) 

[ ] 1
( , )( ) exp ( , ) ( , ),l

i l l i l
i

P tn Z t g Q tx Nx
ρ δ

⎡ ⎤∂
+ = −⎢ ⎥∂⎣ ⎦

xx x ∈Γx ,   (15) 

where  is the initial pressure in the domain Ω; ( )0lP x ( ),ltP tx is the prescribed pressure 

on a Dirichlet boundary segment DΓ ; ( ),lQ tx  is the prescribed fluid flux across 
Neumann boundary segments ; g is the  gravity vector; n(x) is the outward unit vector 
normal to the boundary . 

NΓ

NΓ
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van Genuchten (1980) model is used to describe the relationship between saturation, 
capillary pressure and relative permeability. 

( )
2

1/ 2 1/1 1 ,
mm

rw w wk S S⎡= − −⎢⎣
⎤
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      (16) 
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⎦        (18) 

where ( ) (/ 1w w wr wrS S S S= − − ) oS

w

n

 is the effective water saturation, is water 
saturation, and S

1wS = −

wr is the residual water saturation, α is the pore size distribution, 
 is the capillary pressure, n is the van Genuchten fitting parameters and 
.  In our study, log transformed intrinsic permeability, pore size distribution, 

and van Genuchten fitting parameters are considered random fields, and expanded using 
conditional KL decomposition described in the last section. The governing equations 
(12)-(15) are the stochastic water-oil flow model, and are solved via KL-based 
perturbation methods. 

c oP P P= −
1 1/m = −

The mathematical formulation of the equations (12)-(15) using the KLME method are 
presented by Chen et al. (2006) in detail. Basically, the idea of the KLME approach is to 
decompose stochastic governing equations of flow into a series of deterministic 
equations, which can be solved using existing numerical techniques. The solutions are 
then assembled to obtain explicit and intelligible moments of the dependent variables. 
The KL-based conditional moment equations can be derived in the similar way. Zeroth 
order equations are shown as 
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and first order equations are shown as 
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( , )owC x t  is a stochastic variable depending on the three random fields. There are one 
zeroth order equations, but n of first order equations. n is the terms needed to capture the 
most of uncertainty. Solve the series of equations, and we can construct mean and 
variance of fluid pressures. 

(0) (1) (0)( , ) ( , ) ( , ) ( , )l l l lP t P t P t P≈ + =x x x tx

n t

,    (23) 

(1) (1)
, ,

1
( , , ) ( , ) ( , )

lP l n l
n

C t P t P
∞

=

=∑x y x y .      (24) 

The variances of fluid saturation can be found in the similar way. This stochastic KLME 
water-oil flow model was coded using Fortran. 

4. Illustrative examples 
In this section, we use the stochastic water-oil flow model to examine how input 

random fields and measurements influence stochastic behavior of fluid pressure and 
saturation. We don’t conduct Monte-Carlo simulations for these cases in this study, since 
the accuracy and efficiency of the developed stochastic model have been demonstrated by 
Chen et al. (2006), and our goal is to use it to investigate the problems of interest.   

We assume the log intrinsic permeability Y(x), log pore-size distribution parameter 
β(x), and log van Genuchten fitting parameter ( )n x to be random fields with a separable 
exponential covariance functions as equation (4).  We consider a two-dimensional 
domain in a water-oil flow system in heterogeneous porous medium. This vertical cross 
section is 3 m deep and 0.96 m wide, uniformly discretized into 50×16 square elements 
of 0.06 m × 0.06 m.  The no-flow conditions are prescribed at two lateral boundaries. The 
water and oil pressure are specified at the bottom of the domain (Figure 1). Oil is leaked 
into the domain at node X1 = 2.4 m, X2 = 0.48 m (black solid circle in Figure 1) and a 
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constant precipitation rate is fixed at the top boundary. The soil porosity is 0.5. The initial 
water saturation around the oil leak point is above 0.98. The initial values and boundary 
conditions represent a continuous DNAPL leak into the nearly clean soil with constant 
precipitation on the soil surface.  

The primary fluids properties, random soil properties, and boundary conditions for 
the baseline case are listed in Table 1.  The measurements data are extracted from the 
“true” field, which can be generated from the unconditional Karhunen-Loève 
decomposition (Equation 1). Based on this unconditional simulation of baseline case, we 
will conduct conditional simulations with different number of random variables, 
measurements, and correlation length (Table 2). All the cases are simulated to 1 day.  

4.1 Number of measurements 
Case 1 is the conditional counterpart of the unconditional baseline case, with 

measurements of Y(x), β(x), and ( )n x at the location of oil leak (0.48 m, 2.4 m), while 
Case 2 have additional three measurements at X1 = 1.8, 1.2, 0.6 m along the central 
vertical line. All the four measurement locations are denoted with small circle in Figure 
1.  To simulate conditional Case 1 and Case 2, we first solve for the unconditional 
eigenvalues and eigenfunctions, then compute conditional ones using the algorithm 
described in Section 2.  The first 50 terms of unconditional and conditional eigenvalues 
and eigenfunctions of covariance of β(x) are shown in Figure 2, where condition 1 has 
only one measurement at X1=2.4 m and condition 2 has all the four measurements.  It is 
seen that conditional eigenvalues with four measurements is less than those with one 
measurement, which, in turn, are less than those of the unconditional eigenvalues. It 
indicates that variability of β(x) in Case 2 are smaller than that in both Case 1 and 
unconditional baseline case. It is shown that the series of eigenvalues is monotonously 
decreasing and the first 50 terms can account for about 90% of the total variability. 
Figure 3 compares the third term of unconditional eigenfunctions, conditional 
eigenfunctions with one measurement (condition 1) and four measurements (condition 2). 
It is obvious that the measurements affect the characteristic values and scales of 
eigenfunction fields. 

Figure 4 and Figure 5 show the conditional means and variances of β(x) to be used in 
Case 1 and Case 2.  The values of means around measurements are significantly 
influenced by the measurements. The variability decreases around the measurements in a 
radiated distribution, and the overall variability of β(x) used in Case 2 is a little bit 
smaller than that used in Case 1, since Case 2 has all the four measurements honored in 
the random fields. 

Figure 6 compares the water saturation variances simulated from Baseline Case, Case 
1, and Case 2. For the unconditional case, the water saturation variance presents a 
radiated downward distribution around the oil leak location, indicating more uncertainty 
about the location of the oil as the oil migrates downwards (oil is denser than water). For 
the conditional cases (Case 1, 2), the conditioning effect is very localized, reducing the 
uncertainty of water saturation around the condition points. The variances of oil pressure 
and capillary pressure along central vertical line of the domain for the three cases are 
shown in Figure 7.  It is seen that the peak of the profile for Baseline Case at the oil leak 
location are damped for Case 1 and 2, and the reduction of variability extends to low part 
of the domain for Case 2, since there are additional three measurements below the 
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measurement at the oil leak location. In addition, the overall oil and capillary pressure 
variability are reduced for the two conditional cases, compared to the unconditional case. 
The average variance of oil pressure across the profile is reduced relatively by 92.50% in 
Case 1, and 94.13% in Case 2 from Baseline Case, respectively. For capillary pressure, 
the figures are 93.21% and 93.50% respectively. That means more than 90% of the 
overall uncertainty of oil or capillary pressure along vertical central line is reduced. In 
addition to the number of measurements, the location of measurements is another factor 
influencing the reduction of uncertainty.  As is shown in Figure 7, the measurement at oil 
leak location, where the prediction is most uncertain, contributes much more to the 
uncertainty reduction than the other three measurements. 

We also examine the effect of the oil source term to the prediction uncertainty. We 
increase the oil injection rate from 100 kg/d in Baseline Case, Case 1 and 2 to 10000 kg/d 
in Baseline Case I, Case 3 and 4.  The variances profile of oil pressure and capillary 
pressure are presented in Figure 8.  The variances profile from the unconditional Baseline 
Case I, conditional Case 3 with one measurement, and Case 4 with four measurements 
show the same behavior as those in the low oil injection rate (Figure 7), but the 
magnitude of is almost 4 orders greater.  It indicates that the strength of oil source term 
has the overwhelming effect on the magnitude of prediction variance over the uncertainty 
of soil properties, from which the prediction variability originate. The role of the former 
one in the prediction uncertainty is like amplifier, while the latter is the sound source.  

4.2 Number of conditioned random field 
All the three random fields are conditioned simultaneously at one or four locations in 

Case 1 to 4.  In this section, we modify Case 3, and use unconditional n , β , Y field in 
Case 5, 6, 7 respectively, and leave the other two fields conditional (Table 2). By 
simulating these cases, we attempt to find the relative importance of the three random 
variables to the prediction uncertainty. 

 Figure 9(a) presents the variance profile of oil pressure along central vertical line of 
modeling domain for Case 3, 5, 6 and 7.  With β  and n conditioned at the oil leak 
location, variances of oil pressure from Case 7 are smaller than those from unconditional 
Baseline Case I (Figure 8), but well above those from Case 3, in which all the three 
random variables Y, β , n  are conditioned at the oil leak location.  Compared to Case 5, 
in which Y, β  are conditioned, and Case 6, in which Y, n  are conditioned, the reduction 
of oil pressure variability is the smallest in Case 7.  It seems that the conditional Y is 
more efficient in reducing uncertainty of oil pressure than β , n .  The difference between 
conditioned β and n  is not so large, although, the reduction of oil pressure variability 
with β conditioned (Case 5) is more than that with n  conditioned (Case 6).  

The variances behavior around the oil leak location (X1 = 2.4m) present different 
characteristic between the cases in Figure 9(a). Case 7 is simulated with β , 
n conditioned at the oil leak location, but the oil pressure variances still peak at that 
point. With additional Y conditioned in Case 3, oil pressure variances reach a recess at the 
oil leak location. In Case 5 and 6, with Y, β and Y, n conditioned respectively, the peak 
of oil pressure variance profile along central vertical line in Case 7 and the recess in Case 
3 at the oil leak location are flatten out. These behaviors indicate that the measurement of 
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Y can reduce the oil pressure uncertainty a lot more than that of β or n  locally, and 
hence the overall oil pressure uncertainty throughout the modeling domain. 

The behavior of capillary pressure variance profile is shown in Figure 9(b).  Similar 
with oil pressure variance, Case 7 produces much larger capillary pressure variance than 
Case 3, 5, and 6, although it was smaller than unconditional case. In contrast to oil 
pressure variability, the capillary pressure variability reduces less in Case 5 than in Case 
6. Also, the capillary pressure variability reaches the peak at the oil leak location in Case 
7. However, the profile of capillary pressure variance in Case 5 and 6 arrives at a recess 
at the oil leak location, like Case 3. In addition, the variances of capillary pressure in 
Case 5 and 6 differ from Case 3 less than those of oil pressure in Figure 9(a), indicating 
the relative importance of uncertainty of intrinsic permeability Y versus the pore size 
distribution β  or the van Genuchten fitting parameter n  to the uncertainty of capillary 
pressure is bigger than the oil pressure. 

4.3 Correlation length of random field 
To examine the influence of correlation lengths of random soil properties, we conduct 

Baseline Case II and Case 8 with half correlation length of that in Baseline Case and Case 
1 (Table 2).  Figure 10 (a) shows us that the distribution of variances of water saturation 
for Baseline Case II is radial centered at oil leak location, similar to that for Baseline 
Case (Figure 6 a). Oil saturation variance can be proved to be the same as the water 
saturation variances in such a water-oil flow system. The magnitude of variance in 
Baseline Case II is slightly smaller than that in Baseline Case, since random fields with 
smaller correlation length reduce the prediction variability (Zhang and Lu, 2004). 
Another possible reason is because more terms needed in KL to capture the uncertainty of 
random fields with shorter correlation length. In Baseline Case II, we use the same 
number to terms as that in Baseline Case, so the finial assemble of variances are a little 
smaller.  Similarly, the variability of water saturation from Case 8 (Figure 10 b) is a little 
smaller than that from Case 1 (Figure 6 b). Owing to the measurements of the three of 
soil random fields at the oil leak location, the variances fall substantially but very 
localized around the location.  

What should be noted in the two figures is that the influencing region of the 
measurement at oil leak location in Case 1 is larger than that in Case 8, which is 
expected, since the larger correlation length indicated the larger affecting area of each 
conditioning point, which would reduce relatively the overall prediction variability more. 
The average relative reduction of oil and capillary pressure variability profile along 
central vertical line of conditional Case 1 from unconditional Baseline Case are 92.50% 
and 93.21% (Figure 7).  The reductions of Case 8 from Baseline Case II are 91.29% and 
90.58% (Figure 11), which are smaller than the counterpart with larger correlation length 
(Case 1 v.s. Baseline Case). The peaks of oil pressure and capillary pressure profiles at 
the oil leak location in Case 8 is obvious in Figure 11, while the peaks in Case 1 is almost 
damped in Figure 7. That demonstrate small correlation length of random input fields has 
small reduction of prediction uncertainty locally, in addition to the small influence area. 
Comparison between Figure 7 and Figure 11 indicates that there are few differences of oil 
and capillary pressure variability behavior other than that mentioned above.  
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5. Summary and Conclusions 
In modeling subsurface multiphase flow, the hydrogeology properties characteristic 

of large heterogeneity lead to huge uncertainty of migration of flowing multiple fluids. 
How to reduce the uncertainty and make prediction as accurate as possible is the major 
concern for engineers to make NAPL pollution remediation and petroleum reservoir 
simulation. In this study, we manage to reduce the prediction variability by incorporating 
existing measurements of log intrinsic permeability, pore size distribution, and van 
Genuchten parameters into the unconditional KLME method for water-oil flow system 
developed earlier. The key idea of the algorithm is to compute the conditional covariance 
of the random soil properties via kriging method, and decompose the conditional 
covariance into the conditional eigenvalues and eigenfunctions. After solving a series of 
decomposed deterministic multiphase flow equations with these conditional eigenvalues 
and eigenfunctions, we can assemble prediction mean and variances (water, oil and 
capillary pressure; water and oil saturation).  A series of cases were simulated to 
investigate how the random soil properties and measurements influence the stochastic 
behavior of predictions. The main findings of this paper are summarized as follows: 
1. The conditional KLME method is applicable to stochastic analysis of transient water-

oil flow in heterogeneous porous media, and provide a potential tool for remediation 
and petroleum reservoir engineers to better understand the multiphase flow in 
heterogeneous subsurface area, especially under such a situation that some field 
measurements are available. 

2. The measurements can reduce the prediction variability in the neighboring area 
remarkably, as well as the overall prediction variability across the domain. More 
measurements, more reduction of variability. Some measurements in the key location 
(e.g. source term location) can reduce the uncertainty much more effectively.  

3. In our study, the uncertainty of intrinsic permeability seems to contribute more to the 
uncertainty of prediction than the other two random variables do, while the 
conditional pore size distribution and van Genuchten parameter field only make the 
slight difference of uncertainty reduction of prediction. Thus, adding measurements to 
the random intrinsic permeability fields can reduce the prediction variability more 
than the other two random fields. 

4. The increase of source term strength can increase the variances of prediction by 
several orders, and counteract the uncertainty reduction of conditioned random input 
variables many times. However, the source of prediction uncertainty is from the 
random input, the increase of source term strength only amplifies it. 

5. Small correlation lengths of random fields can reduce the prediction variability. Also, 
more terms in KLME approach needed for smaller correlation length of random fields 
to capture the uncertainty of fluid flow. The smaller the correlation length, the smaller 
area of one measurement can influence, and the smaller the reduction of the 
uncertainty. 
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Tables and Figures 
Table 1.     Soil and fluid properties and boundary conditions 

Parameter name Symbol Units Baseline Case 
Water density ρw kg/m3 997.81 
Oil density ρo kg/m3 1500 
Water viscosity μw Pa⋅s 1.0x10-3

Oil viscosity μo Pa⋅s 6.5x10-4

Mean intrinsic permeability <k>  m2 3.78x10-11

Mean pore size distribution <α> 1/Pa 1.23x10-4

Mean fitting parameter n <n> - 1.35 
Variance of permeability σk

2 - 5.20x10-22

Variance of pore size distribution σα
2 - 1.55x10-10

Variance of fitting parameter n 2
nσ  - 1.13x10-2

Coefficient of variation (k) CV(k) - 53.29 % 
Coefficient of variation (α) CV(α) - 10.03 % 
Coefficient of variation (n) CV(n) - 7.86 % 
Correlation length ηk, ηα,, ηn m 0.3 
Lower boundary water pressure Pw Pa 1.40x105

Lower boundary oil pressure Po Pa 1.55x105

Upper boundary water flux Qw m/s 1.0x10-8

Oil leakage rate Fo kg/d 100 
Table 2.    Cases simulated in this study 

Case 
Conditioned 

Variables 
Number of 

Measurements 
Correlation 
Length (m) 

Oil Source 
(kg/day) 

Baseline 0 - 0.3 100 
Case 1 , ,Y nβ  1 0.3 100 
Case 2 , ,Y nβ  4 0.3 100 
Baseline I 0 - 0.3 10000 
Case 3 , ,Y nβ  1 0.3 10000 
Case 4 , ,Y nβ  4 0.3 10000 
Case 5 ,Y β  1 0.3 10000 
Case 6 ,Y n  1 0.3 10000 
Case 7 ,nβ  1 0.3 10000 
Baseline II 0 - 0.15 100 
Case 8 , ,Y nβ  1 0.15 100 
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Fig. 1. Model domain 

 

Fig. 2. Unconditional and conditional eigenvalues 

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

0 10 20 30 40

Index n

Ei
ge

nv
al

ue
s

 

50

Uncondition Condition 1
Condition 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 3. The third eigenfunctions (n=3) of (a) unconditional, (b) 1 measurement 
conditional, and (c) 4 measurement conditional simulations. 
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Fig. 4. The means of log pore size distribution β with (a) 1 measurement, and (b) 4 
measurements. 

 
Fig. 5. The variances of log pore size distribution β with (a) 1 measurement, and (b) 
4 measurements. 
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Fig. 6. The contour map of variances of water saturation from (a) unconditional 
Baseline Case, (b) conditional Case 1 with one measurement, and (c) conditional 
Case 2 with four measurements. 
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Fig. 7.  The variances along central vertical line (X2 = 0.48 m) of oil and capillary 
pressures from unconditional Baseline Case, conditional Case 1 and Case 2. 
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Fig. 8.  The comparison of variances along central vertical line (X2 = 0.48 m) of oil 
and capillary pressures between unconditional Baseline Case I, conditional Case 3 
and Case 4. 
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Fig. 10. The contour map of variances of water saturation from (a) unconditional 
Baseline Case II, and (b) conditional Case 8. 
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Fig. 11.  The variances along central vertical line (X2 = 0.48 m) of oil and capillary 
pressures from unconditional Baseline Case II, and conditional Case 8. 
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